

RA8806

LCD 控制器

常見使用問題及說明

Preliminary Version 1.0

June 24, 2009

RAiO Technology Inc. ©Copyright RAiO Technology Inc. 2009

RAIO TECHNOLOGY INC.

www.raio.com.tw

Update History				
Version	Date	Description		
1.0	June 24, 2009	Preliminary Version		

Chapte	er Contents	Page
1. 基本	本應用篇	5
1-1	基本介绍	
1-2	▲ 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1	
1-3	使用 RA8806 無法點亮	
1-4	如何寫入文字	9
1-5	如何使用連續資料寫入功能	9
1-6	如何調整 Frame Rate	
1-7	灰階模式與單色模式的 Frame Rate 設定	
1-8	加強顯示品質透過對比的調整	
2. 消降	徐雪花篇	12
2-1	何謂雪花	
2-2		
2-3	使用消除雪花功能時的建議事項	
3. 觸打	空螢幕篇	
3-1	如何使用 RA8806 內建的觸控功能控制實路	
3-2	手動模式與自動模式的差異	
3-3	如何偵測觸控事件的發生	
3-4	自動模式下的設定流程	
3-5	手動模式下的設定流程	
4. 灰	階顯示篇	19
4-1	RA8806的灰階應用與特性	19
4-2	320x240 灰階圖片需求的記憶體空間	
4-3	如何顯示 320x240 的灰階圖片	
4-4	如何在座標爲(5,5)的位置下顯示 240x160 的灰階圖片	
4-5	在灰階模式下,如何顯示文字或符號	
5. 其伯	他常見問題	21
5-1	顯示的文字或圖形缺點	
5-2	顯示的文字或圖形偏移	
5-3	如何避免當機現象	
5-4	如何避免 IC 損毀	

雙圖層 文字/圖形 LCD 控制器

5-5	顯示的書面有殘影或品質不佳	23
J-J	飙小时重曲行戏影戏吅具个注	

1. 基本應用篇

1-1 基本介紹

RA8806 是一顆強大且容易使用的 STN LCD 顯示控制器,除了提供 STN LCD 顯示功能外,還內建 中英文字形檔、智慧型電阻式觸控掃瞄控制器與鍵盤掃瞄介面,使用者可以節省相當多的時間和成 本於系統硬體和軟體發展上。RA8806 系統應用方塊圖如下:

圖 1-1

基本上 RA8806 接受 MCU 送來的指令,然後將 MCU 所希望顯示的內容以資料傳輸到 LCD 驅動器 (Driver),再透過驅動器接到 STN 玻璃上顯示出文字或圖案。因此 RA8806 是界於 MCU 與 LCD 驅動器之間的控制 IC,在實際應用上有兩種模式,一種是將 RA8806 置於 LCD 模組上,做成帶控制器的 LCD 模組,如下圖:

圖 1-2

另一種是將 RA8806 置於系統端,搭配各式不帶控制器的 LCD 模組,如下圖:

1-2 如何設計模組上的RA8806 電路

如果您是模組廠商,想要將RA8806 置於LCD模組上做成帶控制器的LCD模組,請先下載最新的 RA8806 規格書,您可以與瑞佑科技的代理商連系或直接由瑞佑科技的網址(<u>www.raio.com.tw</u>)得到 完整的RA8806 規格書,並且依據RA8806 各腳位的應用、參考 6-2 節對LCD驅動器之間的介面說明 及附錄A的應用電路,來準備您的模組電路圖,下面幾點是比較容易疏忽的地方:

- ◆ 3V與5V的模組在接線上略有不同,請參考規格書第6-7節。
- ◆ 當 RA8806 工作於 5V 的系統時,為了增加 VDD 的穩定性,必須在 VDD 上外加一 1µF
 和 0.1µF 的電容。如下圖或參考規格書第 6-7-3 節。

圖 1-4

◆ RA8806 的振盪電路是由外部在 XG 和 XD 兩腳間的石英振盪器和兩個電容產生,請使用 4MHz~12MHz 的石英振盪器。(雖然 RA8806 與 RA8803/8822 腳位是相容的,但 RA8803/8822 的石英振盪器是固定使用 32768Hz,與 RA8806 不同。)

圖 1-5

- ◆ RA8806 支援 8080 和 6800 等兩種微處理機介面傳輸模式。介面的選擇決定於 IC 接腳 "MI" 的電位,當選擇 8080 來進行介面傳輸時,MI 必須連接到低電位,反之,當選擇 6800 來進行介面傳輸時,MI 必須連接到高電位。而使用者的程式必須依循硬體上的 MCU 介面傳輸模式,RA8806 才能收到 MCU 的正確指令。
- ◆ 由於您無法預知系統端客戶的 MCU 介面環境,為了減輕 MPU 與 RA8806 間的傳輸線 及使用環境的干擾,強烈建議您在 RA8806 的 ZCS1、ZRD、ZWR 端加一小電容 (50~150pF)到 GND,如下圖或規格書的圖 6-1、6-2。

圖 1-6

◆ 使用觸控螢幕的功能除了連接 XL、XR、YU 和 YD 等四條信號線到 RA8806 外,此四 條信號線必須外加 0.01uF 電容到地,YU 也要外加一 39Kohm 提升電阻,如規格書的 圖 6-18 RA8806 觸控螢幕電路。

當然除了RA8806,模組設計者必須確定其他元件與電路的正確性,如升壓電路、OP分壓電路、 LCD Driver電路等等,而不論您是模組設計者或是系統端客戶,都可以參考瑞佑科技所提供的範例 程式(可直接由瑞佑科技的網址(<u>www.raio.com.tw</u>)下載,我們提供了2個為320x240的模組所寫的範 例程式壓縮檔案 RA8806_320x240-EX1.rar 與 RA8806_320x240-EX2.rar。

1-3 使用RA8806 無法點亮

如果您是模組廠商,底下是當您使用 RA8806 無法點亮 LCD 所進行的除錯與分析流程:

- 1. 確定電源(3V 或 5V) 正確送到 RA8806、升壓電路、OP 分壓電路、LCD Driver 電路。
- 2. 確定升壓電路產生的 VLCD 及 OP 分壓電路的產生的 V0~V4 正確送到 LCD Driver。
- 3. 確定 RA8806 的振盪電路正常運作。可用示波器量測 XD、XG 兩腳是否有振盪。
- 4. 確定 RA8806 的 ZRST 於開機收到 MCU 送來的重置信號。Reset 完成後 ZRST 應維持 Hi 的準位。
- 5. 確定 MCU 與 RA8806 的硬體接線、線路定義正確。
- 6. 確定 MCU 產生的時序符合 RA8806 要求,並與 RA8806 在模組上的硬體設定一致。請參考規格書的圖 6-3、6-4。
- 7. 確定 MCU 產生的指令符合 RA8806 的流程與要求。
- 8. 確定 RA8806 給 LCD Driver 的信號(YD、FR、LP、XCK、LD[3:0]) 有正確產生。

通常 RA8806 給 LCD Driver 的信號若有產生,LCD 應會有畫面出現,若無畫面出現則可能的問題通常是升壓部份的電路,不是升壓電路沒有產生 VLCD,就是 OP 分壓電路的產生的 V0~V4 沒有正確 送到 LCD Driver。

如果您是系統端客戶,一般您拿到的模組是模組廠商測試過的,因此出現使用 RA8806 無法點亮的 原因通常是上述的 5~7 項,如果您是將 RA8806 置於系統端,而搭配模組廠商不帶控制器的 LCD 模 組,則必須參考檢查上述的 3~8 項。

1-4 如何寫入文字

在螢幕上寫字(Text)或秀圖(Graphic)時,其實就是在對顯示記憶體(Display Memory)寫入資料,由於 RA8806 設計的關係,使用者必須在寫入資料前,下達 CMD[B0h],然後再寫入欲顯示的資料;否則 將無法顯示。除此之外,當要寫入的資料爲文字(Text)時,必須設定暫存器[00h]的 Bit 3 為 1,否則 顯示出來的將會是圖形資料(Graphic)。例如:欲在畫面上寫英文字母A時,則程式如下所示:

LCD_Text();// set the Register [00h] Bit3 to 1LCD_CmdWrite(0xB0) ;// Character Code of A (Font Code) is 41h

1-5 如何使用連續資料寫入功能

RA8806 具有「連續寫入資料」的功能,實際應用上,使用者只須設定好欲顯示的座標位置,下達 CMD[B0h]之後,就能連續寫入資料(文字或繪圖皆可)。例如:欲在畫面上寫英文字母 ABC 時,則程 式如下所示:

LCD_Text();	// set the Register [00h] Bit3 to 1
LCD_SetXY(5,10);	// set address $X = 5 \cdot Y = 10$
LCD_CmdWrite(0xB0);	
LCD_DataWrite(0x41);	// Font Code A : 41h
LCD_DataWrite(0x42);	// Font Code B : 42h
LCD DataWrite(0x43);	// Font Code C : 43h

值得注意的是,在連續寫資料的過程中,當下達其他的 CMD 時,則必須重新下達 CMD[B0h],才能 繼續寫入資料。其中,使用者最常犯的錯誤就是,在寫資料的過程中重新設定座標的位置,卻忘記 再次下達 CMD[B0h],而使得後面寫的資料無法顯示,請看以下的例子。

ABCDE		
ABCDE		

圖 1-8

大家常犯錯的程式寫法如下:

以上的程式會造成"第二行的 ABCDE"部分無法顯示。此種狀況只需在設定完座標後再下達一次 CMD[B0h]即可解決。正確程式寫法如下:

1-6 如何調整Frame Rate

RA8806 提供一個暫存器 ITCR,可讓使用者來調整 Frame Rate。ITCR 的內容值為「每一 Com 的 起始到開始掃瞄(Scan)中間的閒置時間」,如下圖所示:

圖 1-9

使用者可藉由設定 ITCR 的內容值,進而調整顯示的 Frame Rate,兩者之間的關係公式如下: (假設 panel resolution 為 320x240, driver data bus 為 4 Bit)

Frame Rate =
$$\frac{\text{System Freq.}}{(\text{ITCR} + 320 / 4) \times 240}$$

例如:當系統頻率為 4 MHz 時,若要調整 Frame Rate 為 70Hz,則 ITCR 為:

$$\mathsf{ITCR} = \frac{4 \times 10^6}{240 \times 70} - 80 = 158$$

1-7 灰階模式與單色模式的Frame Rate設定

為達到最佳的顯示,建議 Frame Rate 調整為 120Hz~140Hz,若調整 Frame Rate 為 70Hz,畫面將會出現閃爍的現象。

1-8 加強顯示品質透過對比的調整

會發生此一狀況,通常與 Frame Rate 有關,若為一般顯示(非四灰階顯示)時,當 Frame Rate 大於 90Hz 以上,顯示品質將會愈來愈差,因此發生類似問題時,必須調整 Frame Rate 在 70Hz~80Hz 之間為宜。關於在不同系統頻率下 Frame Rate 調整,使用者可自行參考規格書中之附錄 B。

2. 消除雪花篇

2-1 何謂雪花

所謂「雪花」就是當 RA8806 內部的邏輯電路在執行掃瞄任務時,若在同時 MPU 對 RA8806DDRAM 做資料的存取,顯示幕的掃瞄資料將被干擾造成錯誤,會在顯示幕上顯示多餘的雜點。RA8806內建一個「消除雪花功能」,使用此一功能需將暫存器 MISC(REG[01h])的 Bit 7 設定 為1。

2-2 消除雪花功能的限制

- ◆ 在文字模式和自動清除螢幕畫面模式下無法使用「消除雪花功能」,反之,RA8806 只能在圖形
 模式下才可使用「消除雪花功能」。
- ◆ 所謂「自動清除螢幕畫面模式」即是將要塡的資料(如果是要清除螢幕畫面則是塡 0x00)存到暫存 器 PNTR(REG[E0h]),並啓動該功能,由硬體自動將畫面資料清除。
- ◆ 因此,當切換文字/圖形的顯示模式時,需注意「消除雪花功能」是否開啓,因爲這將導致顯示 上的問題。

2-3 使用消除雪花功能時的建議事項

如此,可將「消除雪花功能」發揮到極致,以確保顯示品質。

- ◆ 當開啓文字模式時,請關閉「消除雪花功能」。
- ◆ 當開啓圖形模式時,請開啓「消除雪花功能」。
- ◆ 在啓動自動清除螢幕畫面模式之前,請關閉「消除雪花功能」,等清除螢幕畫面結束後,再開啓
 「消除雪花功能」。

3. 觸控螢幕篇

3-1 如何使用RA8806 內建的觸控功能控制電路

◆ 硬體控制方面:

對使用者而言,應用觸控螢幕功能只需連接 XL、XR、YU 和 YD 等四條信號線到 RA8806 即 可。另外,為提高信號輸出的穩定度,建議在每條信號線上各接 0.01µF 電容器到地。如下圖所 示。

圖 3-1

◆ 軟體控制方面:

首先必須設定暫存器 TPCR1 的 Bit 7 來致能觸控螢幕功能,其次使用者可依據本身的需要來選擇「手動操作模式」或「自動操作模式」。相關暫存器定義如下:

Reg.	Bit_Num	Description	Reference	
TPCR1	Bit 7	Enable Touch Panel function	REG[C0h]	
трора	Bit 7	"Auto-Mode" or "Manual Mode" selection bit		
TPGRZ	Bit 1~0	Mode selection for TP manual mode	REG[C4II]	
INTR	Bit 4 Touch Panel Hardware Interrupt enable bit.			
	D# 2	Touch event detect bit		
	ΒΙΙ Ο	(use in Manual Mode only).	REGIOFII	
	Bit 0	Touch Panel Detect Status bit		
TPXR	Bit 7~0	Touch Panel X Data Bit [9:2] (Segment)	REG[C1h]	
TPYR	Bit 7~0	Touch Panel Y Data Bit [9:2] (Common)	REG[C2h]	
	Bit 3~2	Bit 3~2 Touch Panel Y Data Bit [1:0] ∘ (Common)		
IPZR	Bit 1~0	Touch Panel X Data Bit [1:0] · (Segment)	REG[C3N]	

表	3-1
---	-----

3-2 手動模式與自動模式的差異

- ◆ 所謂「手動操作模式」是指從「偵測觸控事件」到「栓鎖 X data 與 Y data」以及「讀出 XY 座 標值」的整個過程,都是由程式設計師以手動操作方式來完成。
- ◆ 相對地,當使用「自動操作模式」時,一旦致能觸控螢幕功能之後,使用者無須做任何事,直到 觸控事件(touch event)發生後,便可逕自將 XY 座標値讀出。
- ◆「自動操作模式」的優點在於簡單、易於操作,而「手動操作模式」是保留給使用者相當大的設計彈性。

3-3 如何偵測觸控事件的發生

使用者可透過「外部中斷」或「輪詢(polling)觸控狀態」的方式來偵測觸控事件的發生,說明如下:

(一) 透過外部中斷偵測:

- 1. 硬體方面,必須將 RA8806 的中斷信號(INT)輸出腳接到 MCU 的中斷輸入端。
- 軟體方面,須致能觸控螢幕硬體中斷位元(Touch Panel INT Mask Bit, REG[0Fh]的 Bit 4), 以偵測觸控事件的發生。
- 3. 當偵測到觸控事件發生時, RA8806 將發出中斷信號通知 MCU
- 4. 而程式亦將跳至中斷服務程式(Interrupt service routine, ISR)
- 5. 執行對應的功能。

(二)透過輪詢的方式來偵測觸控狀態:

- 所謂「輪詢」就是不斷檢查暫存器 INTR 中的觸控事件之狀態位元(Bit 0),來偵測是否有觸 控事件發生。
- 當偵測到觸控事件發生時,此一位將被設定為"1",待讀出 XY 座標値、處理完對應功能後, 使用者需將它清除為0,以便能偵測下一次觸控事件的發生。

3-4 自動模式下的設定流程

(一)使用「自動操作模式」時,需設定的參數如下表(標示*號的必須設定的參數,其餘視狀況而定):

Reg.	Bit_Num	Description	RegNum	
TPCR1	Bit 7	Enable Touch Panel function		*
	Bit 6~4	Touch scan sampling time adjust bit	REG[C0h]	*
	Bit 2~0	Touch scan frequency conversion speed bit		*
TPCR2	Bit 7	"Auto Mode" or "Manual Mode" selection bit	REG[C4h]	*
INTR	Bit 4	Touch Panel Hardware Interrupt bit		
	Bit 0	Touch Panel Detect Status bit		

(注)詳細定義說明請參考 Data Sheet 第 18、27、28 頁。

在上表中,暫存器 TPCR1(REG[C0h])中的「觸控掃瞄取樣時間」與「觸控掃瞄頻率轉換速度」 兩項參數的設定具有一定的規則,爲提升 ADC 輸出座標值的穩定度,建議內容值如下表:

System CLK	ADC Conversion Clock Control REG[C0][2:0]	Conversion Frequency (KHz)	Touch scan Sampling wait time REG[C0][6:4]	Sampling wait time	REG[C0] Suggested data
	000	1000	000	50	0x80
4 MHz	001	500	000	50	0x81
	010	250	000	50	0x82
	000	1500	000	50	0x80
	001	750	000	50	0x81
6 MHz	010	375	000	50	0x82
	011	188	001	100	0x93
	100	94	010	200	0xA4
8 MHz	000	2000	000	50	0x80
	001	1000	000	50	0x81
	010	500	000	50	0x82
	011	250	001	50	0x83
	100	125	010	100	0x94
	000	2500	000	50	0x80
	001	1250	000	50	0x81
10 MHz	010	625	000	50	0x82
	011	313	001	50	0x83
	100	156	010	100	0x94
	000	3000	000	50	0x80
	001	1500	000	50	0x81
12 MHz	010	750	000	50	0x82
	011	375	001	50	0x83
	100	188	010	100	0x94

表 3-3

(注)值得注意的是,在不同觸控螢幕模組或觸摸狀態不明確(ex:輕碰)的情況下,上述建議值並不 能完全保證 ADC 輸出的穩定性,這部分尙需使用者在軟體程式方面予以強化。 (二)主要區分為三大執行步驟:

- (1) 設定相關參數(包括選擇「自動模式」、「致能觸控螢幕功能」、「觸控掃瞄取樣時間」、 「觸控掃瞄頻率轉換速度」以及其他設定)。
- (2) 偵測觸控事件(包括「外部中斷」與「輪詢」兩種方式,請參考本篇問題 3-3 之說明)。
- (3) 讀取 XY 座標値(各有 10 Bit,分別存放在 REG[C1h]、[C2h]和 [C1h],請參考本篇問題 3-1
 之說明)。

以下爲自動模式使用「外部中斷」的方式來實現的流程圖:

圖 3-2

3-5 手動模式下的設定流程

(一)當使用「手動操作模式」時,需設定的參數如下表(標示*號的必須設定的參數,其餘則視狀況 而定):

Reg.	Bit_Num	Description	Reference	
	Bit 7	Enable Touch Panel function		*
TPCR1	Bit 6~4	Touch scan sampling time adjust bit	REG[C0h]	
	Bit 2~0	Touch scan frequency conversion speed bit		
TPCR2	Bit 7	TP Manual mode enable		*
	Bit 1~0	Mode selection for TP manual mode	REG[C41]	*
INTR Bit 4 Touch Panel In Bit 3 Touch Panel D mode only). Bit 0 Touch Panel De	Touch Panel Interrupt Mask			
	Dit 2	Touch Panel Detect Status bit (use in manual	DECIDEN	
	DILO	mode only).		
	Bit 0	Touch Panel Detect status bit		

表 3-4

(注)詳細定義說明請參考 Data Sheet 第 18、27、28 頁。

- (二)以「輪詢」方式偵測為例,手動模式計有以下六項步驟:
 - (1) 設定相關參數(包括選擇「手動模式」、「致能觸控螢幕功能」以及其他設定)。
 - (2) 設定手動模式程式為「等待觸控事件」(設定 REG[C4h][1:0] = 01)。
 - (3) 檢查觸控是否為有效事件(不斷檢查 REG[0Fh]之 Bit 3 達一定次數皆相同, 視為有效事件)。 設定手動模式程式為「栓鎖 X data」(亦即設定暫存器 TPCR2[1:0]為 10b),並等待足夠長的時間。(注)
 - (4) 設定手動模式程式為「栓鎖Y data」(亦即設定暫存器 TPCR2[1:0]為 11b),並等待足夠長的時間。(注)
 - (5) 讀取 XY 座標値(各有 10 Bit,分別存放在 REG[C1h]、[C2h]和[C1h],請參考本篇問題一之 說明)。
 - (注)建議等待時間至少為 50 個 ADC Clock 時間長度,至於 ADC Clock 轉換速度則視 REG[C0h] [2:0]而定。假設系統頻率為 4MHz,在 REG[C0h] [2:0] 的不同設定下,建議等 待時間如下表:

REG[C0h][2:0]	ADC clock conversion speed	ADC clock cycle	suggested wait time (50 ADC Clock)
000	1 MHz	1 µs	50 µs
001	500 KHz	2 µs	100 µs
010	250 KHz	4 µs	200 µs
011	125 KHz	8 µs	400 µs

以下為手動模式使用「輪詢」的方式來實現的流程圖:

圖 3-3

4. 灰階顯示篇

4-1 RA8806 的灰階應用與特性

- ◆ RA8806的灰階模式共支援四階(level)顯示。
- ◆ 僅需將暫存器 MAMR (REG[12h])的 Bit 6~4 設定為 000 即可進行灰階顯示。
- ◆ 灰階模式同時支援圖形顯示和文字顯示的功能,其中文字顯示的功能請參考問題 4-5。

4-2 320x240 灰階圖片需求的記憶體空間

在灰階模式下,由於每一顯示位元需要記憶體中的二個位來儲存。因此,一張 320x240 的灰階圖, 則需要:

320 x 240 x <u>2</u> = 153600 bits = 19200 bytes (about 19K bytes)

4-3 如何顯示 320x240 的灰階圖片

將灰階圖形的資料依序從座標位置(0,0)寫入到顯示記憶體即可。範例程式如下所示:

```
LCD_GrayScale_Mode() ; // enable gray scale function

LCD_SetXY(0,0) ; // set coordinate at X = 0 · Y = 0

LCD_CmdWrite(0xB0) ; // memory write command

for(i = 0 ; i < 19200 ; i ++) // write data 19200 bytes

{

LCD_DataWrite(320x240_Gray_pic[ i ]) ;

}
```

4-4 如何在座標為(5,5)的位置下顯示 240x160 的灰階圖片

當工作視窗設定為 320x240 時,則需使用雙迴圈(Double Loop)的方式將 160 列,每列 60 位元組 (240×2 ÷8) 的資料依序寫入到顯示記憶體中。由於無法自動換行,因此需在每列開始寫入資料之 前,重新給予座標位置。範例程式如下所示:

4-5 在灰階模式下,如何顯示文字或符號

瑞佑在這一方面提供兩組程式供客戶參考使用,分別是旋轉畫面 90 度的應用和正常(不旋轉)畫面 的應用。客戶只需在呼叫此一程式時,輸入相關參數,即可在灰階模式下顯示中文字。關於程式中 的輸入參數,說明如下:

- ◆ XX: 欲顯示文字的 X 座標值, data length 8 bits.資料長度為 8 位元。
- ◆ YY: 欲顯示文字的 Y 座標值, data length 8 bits.資料長度為 8 位元。
- ◆ *ptr:文字字串的指標位址, data length 8 bits.資料長度為 8 位元。
- ◆ gray_level:定義文字本身之灰階。
- ◆ font_inverse: 為字型反白的功能。

另外,在使用此一程式之前,必須:

- ◆ 將顯示模式切換為「灰階顯示」。
- ◆ 若要進行旋轉畫面 90 度的應用顯示,亦須將 REG[10h]之 Bit 3 設定為 1。

5. 其他常見問題

5-1 顯示的文字或圖形缺點

可能的原因有 2:

- RA8806 的 DC to DC 不穩定→ 內部 RA8806 工作於 5V(VDDP=5V), VDD 應接一大於 1uF 的電容到地(GND)。請參考規格書第 6-7-3 節。
- MCU 傳遞資料過快導致 RA8806 的處理速度跟不上→ 請在程式加上延時(Delay) ,或以 Check "Busy" 方式確定 RA8806 已經處理完上一筆資料。

5-2 顯示的文字或圖形偏移

可能的原因有 4:

1. RA8806 設定的顯示視窗(Display Window、工作視窗(Active Window)大小與實際 LCD 解析度(Resolution)不同。下表列出幾種較為大家所常用的 LCD 模組及其相關暫存器設定。

Panel Resolution	Segment	Common	REG[21h] DWWR	REG[31h] DWHR
160*80	160	80	13h	4Fh
160*128	160	128	13h	7Fh
160*160	160	160	13h	9Fh
240*64	240	64	1Dh	3Fh
240*128	240	128	1Dh	7Fh
240*160	240	160	1Dh	9Fh
320*240	320	240	27h	EFh

表 5-1

- MCU 傳遞資料過快導致 RA8806 的處理速度跟不上→ 請在程式加上延時(Delay),或以 Check "Busy" 方式確定 RA8806 已經處理完上一筆資料。
- MCU 產生的時序不符合 RA8806 要求→ 避免 Set-up time 或 Hold Time 不足,請參考規格 書的圖 6-3、6-4。
- 4. 系統環境不佳、雜訊干擾過大、或模組與系統連接線過長,都有可能造成此現象→ 雖然 RA8806 在 MCU 介面輸入端採用 Schmitt Trigger 電路避免雜訊干擾,但是過大的雜訊干擾 仍會造成 RA8806 可能的誤動作。為了減輕 MPU 與 RA8806 間的傳輸線及使用環境的干 擾,可以在 RA8806 的 ZCS1、ZRD、ZWR 端加一小電容(50~150pF)到 GND,若是系統 (MCU) 信號過弱或負載(Loading)太大,可以在 RA8806 的 ZCS1、ZRD、ZWR 及 DATA[7:0] 端加(1K~4.7Kohm) 提升電阻。

5-3 如何避免當機現象

可能的原因為系統環境不佳、雜訊干擾過大都有可能造成此現象→請參考上一節(5-2節)的第4點說明。另外避免模組與系統連接線過長。

5-4 如何避免IC損毀

RA8806 的 ESD 高達 +/-8KV, 遠超過工業級 4KV 的要求, 但對於使用在特殊的、惡劣的系統環境仍必須留意 PCB 佈局及加入保護元件, 避免造成此損毀現象。

同時過高的瞬間電源突波或超過規格電壓(5.5V)時間過長也會造成損毀現象→可在模組的 VDD 與 GND 間加一大電容(470uF)或突波吸收器,避免 IC 或 LCD 模組損毀。

圖 5-1

另一種會造成 IC 損毀是因為 EOS(Electrically Over Stress)的原故,最好的避免方法是减短系統與 模組端的 Cable 長度,或是串上 2000hm~1Kohm 電阻:

圖 5-2

5-5 顯示的畫面有殘影或品質不佳

可能的原因有 4:

- 1. 液晶的品質或偏光片不佳。
- 2. 升壓(VLCD)不足或驅動力不夠。
- 3. V0~V4 的分壓不正確。
- RA8806的 Frame Rate 設定太高。請參考規格書附錄 B 的 Frame Rate 設定對照表,依據 使用的規格如解析度(Resolution)、RA8806 Clock 來設定暫存器 REG[90h] - ITCR。Frame Rate 太高會導致驅動 IC(Driver) 耗電大,進而可能影響升壓(VLCD)造成驅動力不夠。